362(24) ① "y varies directly as x" \(\rightarrow \) \(y = kx \)

② \(y = 55 \) when \(x = 5 \)

These values will allow us to calculate \(k \):\[
55 = k(5) \quad \rightarrow \quad k = \frac{55}{5} = 11
\]

So the equation of variation for the given conditions is: \(y = 11x \)

To find \(y \) when \(x = 13 \): \(y = 11(13) = 143 \)

362(36) "\(C \) varies jointly as \(A \) and \(T \)" \(\rightarrow \) \(C = kAT \)

\(C = 175 \) when \(A = 2100 \) and \(T = 4 \)

We can use these values to find \(k \):

\[
175 = k(2100)(4) \quad \rightarrow \quad k = \frac{175}{8400} = \frac{7}{336}
\]

So the equation of joint variation is:

\[
C = \frac{7}{336}AT
\]

For \(A = 2100 \) and \(T = 6 \), \(C = \frac{7}{336}(2100)(6) = \frac{7 \times 2100}{6} = \frac{14700}{6} = 2450 \)

365(46) "Gravitational force varies inversely with square of distance" \(\rightarrow \) \(\text{Force} = \frac{k}{(\text{distance})^2} \)

\[F = \frac{k}{d^2} \]

\(F = 0.4 \) when \(d = 8000 \) \(\rightarrow \) \(0.4 = \frac{k}{8000^2} \)

or \(k = 0.4(8000)^2 = 25600000 \)

Then \(F = \frac{25600000}{d^2} \)

Find \(F \) if \(d = 6000 \) mi: \(F = \frac{25600000}{(6000)^2} = \frac{25600000}{36000000} = \frac{32}{45} \)

\(\approx 0.71 \) lb