Rational Functions

\[f(x) = \frac{p(x)}{q(x)} \]

Finding the domain

\[f(x) = \frac{x - 6}{x^2 - 25} = \frac{x - 6}{(x - 5)(x + 5)} \]
\[
\text{dom } f = \{ x \mid x \neq 5 \text{ and } x \neq -5 \}
\]

\[g(x) = \frac{2x - 3}{x^2 + 81} \]
\[
\text{dom } g = \text{all real numbers}
\]

\[g(x) = \frac{2x - 3}{x^2 + 81} \]
\[f(x) = \frac{x - 6}{x^2 - 25} \]

as \(x \to -5^- \)
\[f(x) \to -\infty \]

as \(x \to -5^+ \)
\[f(x) \to \infty \]

as \(x \to 5^- \)
\[f(x) \to -\infty \]

as \(x \to 5^+ \)
\[f(x) \to \infty \]

Finding Vertical Asymptotes

\[g(x) = \frac{x}{(x - 3)(x + 2)} \]

as \(x \to \infty \)
\[f(x) \to 0 \]

as \(x \to -\infty \)
\[f(x) \to 0 \]
Finding Vertical Asymptotes

If \(f(x) = \frac{p(x)}{q(x)} \) is a rational function in which
\(p(x) \) and \(q(x) \) have no common factors and \(a \) is a zero
of \(q(x) \), then \(x = a \) is a vertical asymptote of the graph
of \(f \).

Finding Vertical Asymptotes

\[
\begin{align*}
h(x) &= \frac{x^3}{(x+7)(x+20)(x-5)} \\
&= \frac{x^3}{(x+7)(x+20)(x-5)} \\
&= \frac{x^3}{(x+7)(x+20)(x-5)} \\
&= \frac{x^3 + 6x + 9}{(x+3)(x-0)(x-5)} \\
&= \frac{x^3 + 6x + 9}{(x+3)(x-0)(x-5)} \\
&= \frac{(x+3)}{(x-0)(x-5)}
\end{align*}
\]

Finding Vertical Asymptotes

\[
\begin{align*}
k(x) &= \frac{x^3 - 4x + 3}{x^2 - 1} \\
&= \frac{(x-3)(x-1)}{(x+1)(x-1)} \\
&= \frac{(x-3)}{(x+1)}
\end{align*}
\]

Finding Vertical Asymptotes

\[
\begin{align*}
k(x) &= \frac{x^3 + 6x + 9}{(x+3)(x-0)(x-5)} \\
&= \frac{x^3 + 6x + 9}{(x+3)(x-0)(x-5)} \\
&= \frac{(x+3)}{(x-0)(x-5)}
\end{align*}
\]

Finding Vertical Asymptotes

\[
\begin{align*}
k(x) &= \frac{x^3 - 4x + 3}{x^2 - 1} \\
&= \frac{(x-3)(x-1)}{(x+1)(x-1)} \\
&= \frac{(x-3)}{(x+1)}
\end{align*}
\]

Horizontal Asymptotes

When \(x \) is far from 0,
\(x^a >> x^{a-1} >> ... >> x^2 >> x \) \(\gg 0 \)

\[
f(x) = \frac{3x^2}{2x^4} \text{ not important} \approx \frac{3x^2}{2x^4} = \frac{3}{2x}
\]

Anytime the degree of the denominator is
higher than the degree of the numerator, the
\(x \) axis will be the horizontal asymptote.
Horizontal Asymptotes
\[f(x) = \frac{7x^4 + 2x^3 + 5x^2 - 2x + 6}{9x^4 + 2x^3 + 5x^2 - 2x + 6} \]
\[f(x) = \frac{7}{9} \]
Anytime the degree of the denominator is the same as the degree of the numerator, the horizontal asymptote will be the line \(y = \frac{a_n}{b_n} \), where \(a_n \) is the leading order coefficient of the numerator and \(b_n \) is the leading order coefficient of the denominator.

Slant Asymptotes
\[f(x) = \frac{x^2 + 5x^2 - 2x + 6}{x^2 - 4} \]
\[f(x) = x + 5 \] as \(x \to \pm \infty \)

Slant Asymptotes
\[f(x) = \frac{x^2 - x^3 + 3}{x^2 - 4} \]
\[f(x) = x^2 + 3 \] as \(x \to \pm \infty \)

Slant Asymptotes
\[f(x) = \frac{x^4 + 5x^2 - 2x + 6}{x^2 - 4} \]
\[f(x) = x + 5 + \frac{2x + 26}{x^2 - 4} \] as \(x \to \pm \infty \)

Slant Asymptotes
\[f(x) = \frac{x + 5}{x^2 - 4} \]
\[f(x) = \frac{x + 5}{x^2 + 5x^2 - 2x + 6} \] as \(x \to \pm \infty \)

Slant Asymptotes
\[f(x) = \frac{x + 5 + \frac{2x + 26}{x^2 - 4}}{x^2 + 5x^2 - 2x + 6} \]

Slant Asymptotes
\[f(x) = \frac{x^2 + 3}{x^2 - 4} \]
\[f(x) = \frac{x^2 + 3}{x^2 - 4} \] as \(x \to \pm \infty \)

Slant Asymptotes
\[f(x) = \frac{x + 5 + \frac{2x + 26}{x^2 - 4}}{x^2 + 5x^2 - 2x + 6} \] as \(x \to \pm \infty \)

Anytime the degree of the numerator is one more than the degree of the numerator, the graph will approach a slanted line as \(x \) gets far from zero. The equation of that "slant asymptote" can be found from long division.
x-intercepts

$f(x) = \frac{a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \ldots + b_1 x + b_0} = 0$

only happens when $a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 = 0$

To find x-intercepts, find the zeros of the numerator (factors of the numerator that cancel factors of the denominator will disappear.)

Graphing by Deduction

0. Factor to get into lowest terms.
1. Check for symmetry
2. Find the y-intercept, if any (set $x = 0$)
3. Find any x-intercepts (set numerator = 0)
4. Find any vertical asymptotes (set denominator = 0)
5. Find the horizontal or slant asymptote (if any)
6. Plot at least one point between and beyond each x-intercept and vertical asymptote.
7. Plot the information from steps 1-6 to deduce the basic form of the graph.

Graph by Deduction

$f(x) = \frac{4x^2 - 1}{x^2 + 3}$

Symmetry about the y-axis

y-intercept at $(0, -\frac{1}{3})$

x-intercepts at $(-\frac{1}{2}, 0)$ and $(1, 0)$

No vertical asymptotes

Horizontal asymptote given by $y = \frac{-1}{3}$

$f(-1) = \frac{4(-1)^2 - 1}{(-1)^2 + 3} = \frac{3}{4}$

$f(1) = \frac{3}{4}$

Graph by Deduction

$f(x) = \frac{x^2 + 4}{x - 1}$

$f(-x) = \frac{(-x)^2 + 4}{-x - 1}$

No origin or y-axis symmetry

$f(0) = \frac{0^2 + 4}{0 - 1} = 4$ y-intercept at $(0, 4)$

$x^2 + 4 = 0$ no x-intercepts

Vertical asymptote is the line $x = 1$

Has slant asymptote $y = x + 1$
Graph by Deduction

\[f(x) = \frac{x^3 + 4}{x - 1} \]

- No origin or \(y \)-axis symmetry
- \(y \)-intercept at \((0, -4)\)
- No \(x \)-intercepts
- Vertical asymptote is the line \(x = 1 \)
- Has slant asymptote \(y = x + 1 \)

\[
\begin{align*}
 f(5) &= \frac{5^2 + 1}{5 - 1} = \frac{26}{4} = 6.5 \\
 f(-5) &= \frac{(-5)^2 + 1}{-5 - 1} = \frac{26}{-6} = -4.33
\end{align*}
\]

Graph by Deduction

\[f(x) = \frac{x + 6}{2x^2 - 5x + 2} \]

- No origin or \(y \)-axis symmetry
- \(y \)-intercept at \((0, 3)\)
- \(x \)-intercept at \((-2, 0)\)
- Vertical asymptotes given by \(x = 2 \) and \(x = \frac{1}{2} \)
- Horizontal asymptote is \(x \)-axis

\[
\begin{align*}
 f(0) &= \frac{0 + 6}{2(0)^2 - 5(0) + 2} = \frac{6}{2} = 3 \\
 x + 6 &= 0 \quad x = -6 \quad \text{- intercept at } (-6, 0) \\
 f(0) &= -3 \\
 f(-7) &= \frac{-1}{65} \quad f(1) = -7 \\
 f(3) &= \frac{9}{5}
\end{align*}
\]