Inverse of an Exponential Function

\[f(x) = b^x \]

If \(b > 1 \), \(f(x) = b^x \) is an increasing function.

If \(0 < b < 1 \), \(f(x) = b^x \) is a decreasing function.

Every exponential function has an inverse.

Inverse of an Exponential Function

\[f(x) = b^x \]

\(y = b^x \)

\(x = b^y \)

Stuck, algebraically, but not verbally.

"y is the exponent you put on \(b \) to get \(x \)."

\(f(x) = 2^x \)

\(f^{-1}(8) = ? \) \(f \) inverse of 8 is the exponent you put on 2 to get 8.

\(2^3 = 8 \quad 2^4 = 8 \)

\(f^{-1}(8) = 3 \)

logarithm: logos + arithmos

"reason (logic) number"

Inverse of an Exponential Function

\(y = \log_b x \)

"y is the logarithm base \(b \) of \(x \)."

\(\log_3 \frac{1}{27} = ? \quad 3^7 = \frac{1}{27} \quad 3^3 = 3^{-3} \quad \log_3 \frac{1}{27} = -3 \)

\(\log_{10} 4 = ? \quad 64^\frac{1}{3} = 4 \quad (4^3)^\frac{1}{3} = 4 \)

\(\log_{10} 4 = 1/3 \)

Some basic properties of logs

\(\log_b b = ? \quad b^1 = b \quad b^0 = 1 \quad \log_b 1 = 0 \)

\(\log_b b^x = ? \quad b^1 = b^1 \quad b^1 = b^1 \quad \log_b b^x = x \)

\(b^{\log_b x} = ? \quad b \) the exponent you put on \(b \) to get \(x \)

\(b^\log_b x = x \)
Domain of a log.

\[g(x) = \log_b x \]

Since \(b > 0 \), there will only be an answer if \(x > 0 \)

\[D_g = \{ x \mid x > 0 \} \]

\[h(x) = \log_b (x^2 - 4) \]

\[x^2 - 4 > 0 \]

\[(x - 2)(x + 2) > 0 \]

\[D_h = \{ x \mid x < -2 \text{ or } x > 2 \} \]

Inverse Properties of Logs

\[\log b^r = x \quad \quad b^{\log_b x} = x \]

\[f(x) = b^r \quad g(x) = \log_b x \]

\[f(g(x)) = \log_b f(x) = \log_b b^r = x \]

\[f(g(x)) = b^{r(x)} = b^{\log_b x} = x \]

\[D_f = \{ x \mid x > 0 \} \]

\[D_g = \{ x \mid x > 0 \} \]

\[R_f = \{ x \mid x > 0 \} \]

\[R_g = \{ x \mid x \text{ is a Real number} \} \]

\[g(x) = f^{-1}(x) \quad f(x) = g^{-1}(x) \]

Graphing Logs

Graph \(f(x) = \log_b x \)

\(f(x) \) is the inverse of \(g(x) = 3^r \)

Graph \(f(x) = 2 - \log_2 x \)

\(f(x) \) is \(\log_2 x \) flipped vertically and shifted up 2.

Common and Natural Logs

"\(\log_{10} x \)" is abbreviated "\(\log x \)"

"\(\log_e x \)" is abbreviated "\(\ln x \)"

\[\log 0.01 = ? \quad \log_{10} 0.01 = ? \quad 10^{-2} = 0.01 \]

\[10^2 = \frac{1}{100} \quad 10^{-2} = 0.01 \quad \log 0.01 = -2 \]

Common and Natural Logs

Graph \(f(x) = \ln(2 - x) \)

\(\ln(2 - x) = \log_e (2 - x) \)

\(f(x) \) is \(\log_e x \) shifted left 2 and flipped horizontally

If \(g(x) = \log_e x \)

and \(h(x) = g(x + 2) \),

\(f(x) = h(-x) = g(-x + 2) \)

\(\log_e x \) is the inverse of \(e^r \)

shift left 2.

flip horizontal